Business Opportunities Creating Large-Scale Carbon Emissions Mitigation:
Generating Reliable Power While Creating Negative Carbon Emissions

Note: On Jan 05, 2022, this article we prepared was published in oilprice.com:  How Oil & Gas Companies Can Profitably Create Carbon-Negative Energy.  In addition, these business opportunities were presented at the We Don’t Have Time COP26 Backdoor event on November 6th, 2021 (see LINK).  If you are interested in collaborating with us, please fill out this form: Request for Collaboration Form.

Section A: Introduction

1a) Animated Intro Video (3.5 min.):

1b) Animated Intro Video (7 min.):

1c) Draft Intro Presentation Video (11 min.):

2) Full (25-min.) Presentation Video:

3) Simplified schematic of the combined power system that is explained in the above video:
4a) An image of one example combined power system that is explained in the above video:
4b) An image of the example combined power system with Global Thermostat’s Direct Air Capture (DAC) technology: 

5) A major opportunity has emerged to capture and sequester CO2 from the atmosphere on a global scale as a result of rapid progress in four key technology areas, increased locations for storing CO2, and the rapid growth of climate finance.  Given below is a summary of these developments and links to associated technologies:

a) Development of technologies enabling fossil fuel-based power generation with carbon capture, including the following:

i) Development of a breakthrough technology (Allam Cycle) that generates power from natural gas and captures 100% of CO2 created.
ii) Shell CANSOLV® CO₂ Capture System – A proprietary amine technology captures the CO2 from the flue gas and releases it as a pure stream.
iii) SureSource Capture by FuelCell Energy – Enables a coal plant to generate 80% more power, capture 90% of CO2 and reduce NOx emissions by 70%.
iv) Global Thermostat -Their DAC technology can cost-effectively capture CO2 from the outside air and natural gas power plants simultaneously.

b) Development of technologies that can capture CO2 from outside air (Direct Air Capture or DAC) at a relatively low estimated cost.  Given below is of companies with innovative DAC technologies along with some related notes:

iii) Global Thermostat -Their DAC technology can cost-effectively capture CO2 from the outside air and natural gas power plants simultaneously.
iv) TerraFixing – their DAC technology is most cost effective in cold, dry climates. 
v) Carbyon
xiii) Sustaera

c) Development of many utility-scale energy storage technologies.  Given below some battery-based utility-scale energy storage companies and associations:

ii) UniEnergy Technologies – Vanadium Redox Flow Battery; Wiki Page
iii) Tesla Utility-Scale Energy Storage – Lithium-Ion Battery
v) Form Energy – Iron-air battery; Video Review: Just Have a Think: Iron-Air Battery, Aug 1, 2021
vi) ESS Inc. – Iron Flow Battery
vii) Energy Dome – CO2 Battery

Note: Selected online reviews of battery-based energy storage technologies: Energy Storage YouTube Playlist

d) Continued improvement and declining costs of renewable energy technologies, including wind and solar.

e) There has been a rapid growth in the number of locations where CO2 can be stored.  These locations are often associated around clusters of industries that are implementing carbon capture, utilization and storage (CCUS).  Given below are two example CCUS clusters:

i) Alberta Carbon Trunk Line (ACTL) system
ii) Net Zero Teesside.

Each of these CCUS clusters already have several companies working together to utilize a common CO2 sequestering service and are inviting more companies to join them to utilize this same sequestering service.  To view a more comprehensive list of these types of clusters around the world, see: Global Status of CCS 2020 report by Global CCS Institute.  Also, see the CCS Database managed by Global CSS InstituteFor some additional background about these types of clusters around the world, see: Understanding Industrial CCS hubs and clusters by the Global Carbon Capture and Storage Institute.

f) Rapid growth of Green Bonds to finance projects that can be sold to financial organizations that have committed to investing in climate action such as the Glasgow Financial Alliance for Net Zero, which has a combined total of over $130 trillion US dollars under management.  For more information, see section C below:

6) The combined CPG+CCUS facility, which includes an Allam cycle power plant, renewable energy farms, direct air capture (DAC) and vertical farms will provide the following benefits:

    • Provides reliable power to the electrical grid even when wind and/or solar farms are not generating power.
    • Generates negative carbon emissions.
    • Demonstrates how the oil and gas sector can help scale-up wind and/or solar farms cost-effectively.
    • Helps the oil, gas and power plant workers transition to and participate in a low carbon economy.
    • Helps governments and companies that depend on income from fossil fuels to transition to a low-carbon economy.
    • Reduces the incentive for oil and gas companies to resist policies that support large-scale action on climate change.
    • Helps build political support to transition to a low carbon economy.
    • Helps build an industry that utilizes CO2 for productive uses including vertical farming, which supports food security.
Section B: CCUS and DAC Research and Development
7) There are several research centres that are focused on DAC, which can help accelerate the development and scale-up of DAC.  This includes the following:

8) The recent progress in developing new DAC technologies and reducing costs of existing ones is not well known.  Therefore,  we expect many CCUS experts from research institutes will likely become interested in new and existing DAC technologies once they learn about the progress over the last five years.  Since these same people are typically very alarmed about the lack of progress on mitigating climate change, they may want help to accelerate its implementation.  Given below are some of the many organizations that are working on CCUS issues:

a) Global Carbon Capture and Storage (CCS) Institute.
b) National Energy Technology Laboratory (NETL) Carbon Capture Program.
c) IEAGHG, Cheltenham, UK.
d) Norwegian CSS Research Centre.
e) Carbon Capture & Conversion Institute, Calgary, AB.
f) Carbon Capture and Storage (CCS) is part of WRI’s U.S. Climate Program.
g) Carbon Capture and Sequestration Technologies Program at MIT (It includes a Carbon Capture and Sequestration Project Database).
h) Carbon Capture, Utilization and Storage Research, Office of Fossil Energy and Carbon Management, Energy.gov.
i) National Carbon Capture Center (created by DOE)
j) NRCAN: Canmet-ENERGY Ottawa’s CCUS program.
k) AIChE’s Research Coordination Network – CCUS Program.

9) To accelerate the scale-up of DAC technologies, CCUS and DAC research centers could be invited to work on projects such as the ones outlined below:

a) Select many good locations for facilities using DAC technology. Then estimate the expected capital and operating costs of an appropriately sized facility based on local conditions and availability of energy.
b) Explore complementary technology options, such as Vertical Farms, for selected possible locations for implementation.
c) Explore options to receive CO2 from large emitters of this gas that can be sequestered in the same location as the selected DAC project location.
d) Work with Green Bond specialists to evaluate selected projects and determine if they are “Green Bond Eligible”.
e) Reach out to potential partners who may want to finance and/or operate facilities.
f) Prepare proposals for funding next steps needed for scale-up.

For a more detailed summary of research projects that can be implemented by CCUS and DAC research centers, visit: Set of Proposed Research Projects Relating an Opportunity that has Emerged to Reduce Carbon Emissions on a Global Scale.

10) Research funding can come from the existing sources for these institutes and very high net worth (VHNW) individuals who are very concerned about climate change.

11) Several well researched DAC reports have been published over the last few years including the following:

a) CNE: The Case for Negative Emissions (144 pages) by the Coalition for Negative Emissions
b) McKinsey: Driving CO2 emissions to zero (and beyond) with carbon capture, use, and storage, June 2020
c) McKinsey: Net-Zero Europe – Decarbonization pathways and socioeconomic implications – How the European Union could achieve net-zero emissions at net-zero cost
d) ECI: DAC Climate Mobilization Report, – Mobilize Now – Scaling up Direct Air Capture by The Elk Coast Institute, Oct 2021
e) ECI: The case for Mobilization, Peter Eisenberger, May 2020
f) ECI: Carbon Negative Power Plants, May 2011, Peter Eisenberger and Graciela Chichilnisky
g) Research Opportunities for CO2 Utilization and Negative Emissions at the Gigatonne Scale by Arun Majumdar & John Deutch
h) C2ES: Carbon Dioxide Removal: Pathways and Policy Needs, June 2021
i) Microsoft: Microsoft carbon removal Lessons from an early corporate purchase, 2021
j) Wiki article on Direct Air Capture (DAC) of Carbon Dioxide: Direct Air Capture.

12) To help illustrate this overall opportunity for carbon emission mitigation, ClimateSAN has created a 3-min. and a 6-min. animated videos, which is shown on this webpage: Opportunity for Rapid Large-Scale Carbon Emissions Mitigation.  This webpage also includes our 21-min. full presentation video about this opportunity.

Section C: Financing
13) Financing Allam Cycle Projects on a Global Scale:
a) Green Bonds can be an effective way to finance many Allam Cycle-based power generation projects.  When the green bonds are issued, they can be promoted to financial firms that are members of the following initiatives:
iThe Glasgow Financial Alliance for Net Zero (GFANZ), which includes firms with over US$130 trillion US under management.
ii) Climate Action 100+ initiative, which includes firms with over US$35 trillion in assets under management.
iii) Coalition for the International Platform for Climate Finance (IPCF), which includes firms with over US$7 trillion in assets under management.
Note: Some of the financial firms that are members of one initiative listed here may be members of other initiatives listed here.
b) Steps to issue a Green Bond by Sustainalytics, February 6, 2019
c) Many companies that are partners of ClimateBonds.net are now facilitating the issuing of Green Bonds.  To view a list of them, visit: ClimateBonds.net/partners.
14) Carbon Emissions Trading Marketplaces:
a) Puro Earth (recently acquired by NASDAQ) – a B2B marketplace, standard and registry focused solely on carbon removals”.  They also facilitate long-term off-take agreements for the carbon that is expected to be captured and stored by a facility. 
15) Carbon Market Consultants:
a) Clearblue Markets specializes in carbon pricing advisory, market analysis, transactions, and offset development.
b) Climate Trust is a non-profit that manages carbon offset acquisition programs and projects for organizations seeking to reduce their carbon footprint.
c) CarbonSink specializes in business consulting, analytics and climate finance.
16) There is a rapid growth of companies needing to buy carbon credits to meet their Net Zero commitments.  To view some articles about the growth of a number of companies committing to Net Zero, visit:

Section E: Summary

17) In summary, scaling-up DAC technology with power plants that do not emit carbon emissions may be one of the biggest opportunities to reduce CO2 emissions on a global scale before 2030 and beyond.  It includes the following key features:

a) Technologies are available now for scale-up.
b) We can engage the fossil fuel, energy storage, renewable energy and direct air capture sectors to participate in and benefit greatly from it.
c) Financial mechanisms and money are available to fund a massive scale of these technologies.
d) There are natural resources and locations available to implement this on a global scale.

18) Supplemental webpage highlighting the need for implementing this solution on a global scale: How Climate Change is a Security Threat Multiplier and What Can Be Done?
Section F: Planned Next Steps by ClimateSAN
19) Estimate the capital and operating cost of the demonstration scale DAC project this is combined with a power generation system, energy storage and a renewable energy farm.
20) Work with interested Project Developers and carbon emissions trading consultants to reach out to companies committed to NetZero Carbon in order to obtain long term contracts at a premium price per tonne for carbon capture and storage utilizing one or more DAC technologies.
21) Research the carbon trading agreement announced at COP26 (International Emissions Trading Association (IETA) welcomes Glasgow Climate Pact) to determine how developers of energy generation projects with carbon capture can benefit from this agreement.
22) Investigate the latest information about the planned Canadian Federal Greenhouse Gas Offset System, which is likely to be finalized this year.